An Introduction to System-theoretic Methods for Model Reduction - Part III Preserving System Structure

Christopher Beattie

Department of Mathematics, Virginia Tech Division of Computational Modeling and Data Analytics, Virginia Tech

ICERM Semester Program - Spring 2020 Model and dimension reduction in uncertain and dynamic systems Providence, RI

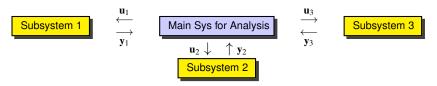
February 4, 2020

Outline for Second Lecture

Implicitly Structured Dynamical Systems Energy-based Modeling and Reduction

- Basic energy-based modeling notions for dynamical systems.
 - Supply rates and dissipativity for linear dynamical systems
 - Storage functions and Linear Matrix Inequalities
 - Preserving dissipativity with interpolatory model reduction
- Structurally passive nonlinear dynamical systems: port-Hamiltonian systems
 - Ensemble-based methods (POD)
 - Ensemble-free methods built on interpolatory methods

Goals of Model Reduction



- Replace high-order complex subsystems with low-order, (but high-fidelity) surrogates. Encode high resolution/fine grain structure of the subsystem response acquired offline into compact, efficient online surrogates.
- Avoid using (expensive) human resources. Want the process to be (relatively) automatic and capable of producing reliable high-fidelity surrogates.
- Should respect underlying "physics" High fidelity may not be enough surrogate models should behave "physically" and respect underlying conservation laws.

Energy-based modeling of dynamical systems

DynSys:
$$\mathbf{u}(t) \in \mathbb{U} \longrightarrow \begin{bmatrix} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x} \end{bmatrix} \mathbf{x}(t) \in \mathbb{X}$$
 $\longrightarrow \mathbf{y}(t) \in \mathbb{Y}$

• Assume: linear, time-invariant, asymp stable, min sys realization.

Energy-based modeling: allows for the system to extract, store, and return value ("energy") to/from the environment. (inspired by: "Gibbs free energy", "available work", "karma" ...)

Key Modeling Element:

 Energy/Value Supply Rate, w: 𝒴 × 𝒴 → ℝ with w(y(·), u(·)) ∈ L¹_{loc} w(y(t), u(t)) models the instantaneous exchange of value/energy of the system with the environment via inputs and outputs.

Supply rates and dissipativity

Examples of supply rates:

• $w(\mathbf{y}(t), \mathbf{u}(t)) = \mathbf{u}(t)^T \mathbf{y}(t)$ (work \Rightarrow "Passive systems")

- $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2}(\|\mathbf{u}(t)\|^2 \|\mathbf{y}(t)\|^2)$ (instantaneous gain \Rightarrow "Contractive systems")
- $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2} (\mathbf{y}(t) \quad \mathbf{u}(t)) \begin{bmatrix} -\mathbf{N} & \Omega \\ \Omega^T & \mathbf{M} \end{bmatrix} \begin{pmatrix} \mathbf{y}(t) \\ \mathbf{u}(t) \end{pmatrix}$

with $\mathbf{M} \geq 0 \quad \mathbf{N} \geq 0 \qquad$ (General quadratic supply rate)

For a given energy/value supply rate, $w(\mathbf{y}(\cdot), \mathbf{u}(\cdot))$, a dynamical system is *dissipative with respect to w*, if whenever the system starts in an equilibrium state at $t_0 = 0$,

$$\int_0^t w(\mathbf{y}(t), \mathbf{u}(t)) \, dt \ge 0 \qquad \text{for all } t \ge 0$$

Starting from equilibrium, a dissipative system can never lose more energy to the environment than it has gained. A storage function associated with the supply rate, *w*, is a scalar-valued function of state, $H : \mathbb{X} \to \mathbb{R}^+$, that satisfies for any $0 \le t_0 < t_1$

 $\mathsf{H}(\mathbf{x}(t_1)) - \mathsf{H}(\mathbf{x}(t_0)) \le \int_{t_0}^{t_1} w(\mathbf{y}(t), \mathbf{u}(t)) \, dt$ (dissipation inequality)

- H(x) is a measure of "internal energy" in the system when it in state x.
- The dissipation inequality asserts the change in internal energy cannot exceed the net energy absorbed or delivered by the system from/to the environment.
- Dissipative systems cannot create "energy" internally apart from what is delivered from the environment.

Available Storage – max energy extractable from a system state

For any *storage function* $H : X \to \mathbb{R}^+$ associated with the supply rate, *w*: for any $0 \le t_0 < t_1$, $\mathbf{u} \in \mathbb{U}$

$$H(\mathbf{x}(t_1)) - H(\mathbf{x}(t_0)) \le \int_{t_0}^{t_1} w(\mathbf{y}(t), \mathbf{u}(t)) dt \quad \text{(dissipation inequality)}$$

Starting with $\mathbf{x}(0) = \hat{\mathbf{x}}$, then for any $\mathbf{u} \in \mathbb{U}$

$$-\mathsf{H}(\hat{\mathbf{x}}) \le \mathsf{H}(\mathbf{x}(\tau)) - \mathsf{H}(\hat{\mathbf{x}}) \le \int_0^\tau w(\mathbf{y}(t), \mathbf{u}(t)) \, dt \implies -\int_0^\tau w(\mathbf{y}(t), \mathbf{u}(t)) \, dt \le \mathsf{H}(\hat{\mathbf{x}})$$
$$\implies \sup_{\tau > 0, \mathbf{u} \in \mathbb{U}} \left(-\int_0^\tau w(\mathbf{y}(t), \mathbf{u}(t)) \, dt \right) \le \mathsf{H}(\hat{\mathbf{x}})$$

• $H(\mathbf{x}) \ge H(\mathbf{0})$ and wlog we can assume $H(\mathbf{0}) = 0$

"Available Storage"

$$\mathsf{H}_{min}(\hat{\mathbf{x}}) = \sup_{\substack{\mathbf{u} \in \mathbb{U} \\ \tau > 0}} \left\{ -\int_0^\tau w(\mathbf{y}(t), \mathbf{u}(t)) \, dt \quad | \quad \mathbf{x}(0) = \hat{\mathbf{x}} \right\}$$

This is the maximum amount of energy that the system can make available to do work on the environment, starting at the initial state x̂. For any x̂ ∈ X, H_{min}(x̂) ≤ H(x̂).

Required Supply : min energy required to set a system state

For any *storage function* $H : X \to \mathbb{R}^+$ associated with the supply rate, *w*: for any $0 \le t_0 < t_1$, $\mathbf{u} \in \mathbb{U}$

 $\mathsf{H}(\mathbf{x}(t_1)) - \mathsf{H}(\mathbf{x}(t_0)) \le \int_{t_0}^{t_1} w(\mathbf{y}(t), \mathbf{u}(t)) \, dt$ (dissipation inequality)

• If $\mathbf{u} \in \mathbb{U}$ steers the system from a null initial state $\mathbf{x}(0) = \mathbf{0}$ to a final state $\mathbf{x}(\tau) = \hat{\mathbf{x}}$ at $t = \tau$, then

$$\mathsf{H}(\hat{\mathbf{x}}) = \mathsf{H}(\hat{\mathbf{x}}) - \mathsf{H}(\mathbf{0}) \le \int_0^\tau w(\mathbf{y}(t), \mathbf{u}(t)) \, dt$$

This is the minimum amount of energy that the system must absorb from the environment to move from a null state to a final state of x̂.

For any $\hat{\mathbf{x}} \in \mathbb{X}$, $\mathsf{H}(\hat{\mathbf{x}}) \leq \mathsf{H}_{max}(\hat{\mathbf{x}})$.

- Dissipativity is an exogenous system property externally characterized; dependent on supply rate but independent of system realization.
- Storage functions are endogenous to a system internally characterized; dependent both on supply rate and system realization.
- For dissipative systems, both H_{min}(x) (available storage) and H_{max}(x) (required supply) are valid storage functions.

Quadratic supply rates imply quadratic storage functions

$$\begin{aligned} \mathsf{H}(\mathbf{x}) &= \frac{1}{2} \, \mathbf{x}^T \mathbf{Q} \mathbf{x} \quad \text{for some } 0 < \mathbf{Q} \\ \mathsf{H}_{min}(\mathbf{x}) &= \frac{1}{2} \, \mathbf{x}^T \mathbf{Q}_{min} \mathbf{x} \qquad \mathsf{H}_{max}(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \mathbf{Q}_{max} \mathbf{x} \\ \text{and} \qquad 0 < \mathbf{Q}_{min} \le \mathbf{Q} \le \mathbf{Q}_{max} \end{aligned}$$

State-space conditions for dissipativity

Take the supply rate to be a general quadratic:

 $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2} (\mathbf{y}^T \mathbf{u}^T) \begin{bmatrix} -\mathbf{N} & \Omega \\ \Omega^T & \mathbf{M} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \end{pmatrix}$ with $\mathbf{M} \ge 0, \mathbf{N} \ge 0$ and

suppose H(x) is an associated quadratic storage function:

$$\mathsf{H}(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \mathbf{Q} \mathbf{x} \ \text{ for } \ \mathbf{Q} > 0.$$

The dissipation inequality implies

$$\frac{d}{dt} \mathbf{H}(\mathbf{x}(t)) \le w(\mathbf{y}(t), \mathbf{u}(t)).$$

$$\implies \mathbf{x}^T \mathbf{Q} \dot{\mathbf{x}} = \mathbf{x}^T \mathbf{Q} (\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}) \le \frac{1}{2} (\mathbf{x}^T \mathbf{C}^T \mathbf{u}^T) \begin{bmatrix} -\mathbf{N} & \Omega \\ \Omega^T & \mathbf{M} \end{bmatrix} \begin{pmatrix} \mathbf{C} \mathbf{x} \\ \mathbf{u} \end{pmatrix}$$

$$\implies \frac{1}{2} \mathbf{x}^T (\mathbf{Q} \mathbf{A} + \mathbf{A}^T \mathbf{Q} + \mathbf{C}^T \mathbf{N} \mathbf{C}) \mathbf{x} + \mathbf{x}^T (\mathbf{Q} \mathbf{B} - \mathbf{C}^T \Omega) \mathbf{u} - \frac{1}{2} \mathbf{u}^T \mathbf{M} \mathbf{u} \le 0$$
The system is dissipative wrt the supply *w* if and only if the LMI
$$\begin{bmatrix} \mathbf{Q} \mathbf{A} + \mathbf{A}^T \mathbf{Q} + \mathbf{C}^T \mathbf{N} \mathbf{C} & \mathbf{Q} \mathbf{B} - \mathbf{C}^T \Omega \\ \mathbf{B}^T \mathbf{Q} - \Omega^T \mathbf{C} & -\mathbf{M} \end{bmatrix} \le 0 \quad \text{has a positive-definite solution matrix, } \mathbf{Q} > 0$$

Special case: Passive systems

Take the supply rate to be:

$$w(\mathbf{y}(t), \mathbf{u}(t)) = \mathbf{u}(t)^T \mathbf{y}(t) = \frac{1}{2} (\mathbf{y}^T \mathbf{u}^T) \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \end{pmatrix}$$

(defining $\mathbf{M} = \mathbf{N} = 0$ and $\Omega = \mathbf{I}$)

and suppose H(x) is an associated quadratic storage function:

 $\mathsf{H}(x) = \frac{1}{2} \, x^{ \mathrm{\scriptscriptstyle T}} Q x \ \text{ for } \ Q > 0.$

• The system is **passive** with the storage function H(x), if and only if Q is a positive-definite solution to the LMI:

$$\begin{bmatrix} \mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} & \mathbf{Q}\mathbf{B} - \mathbf{C}^{T} \\ \mathbf{B}^{T}\mathbf{Q} - \mathbf{C} & \mathbf{0} \end{bmatrix} \leq \mathbf{0} \Leftrightarrow \quad \frac{\mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} \leq \mathbf{0}}{\mathbf{Q}\mathbf{B} = \mathbf{C}^{T}}$$
(Luré LMI)

• Passive systems have **port-Hamiltonian** realizations. Take $\mathbf{Q}\mathbf{A} = \mathbf{J} - \mathbf{R}$ with $\mathbf{J} = -\mathbf{J}^T$ and $\mathbf{R} = \mathbf{R}^T$ (skew-symm + symm).

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \Leftrightarrow \mathbf{Q}\dot{\mathbf{x}} = \mathbf{Q}\mathbf{A}\mathbf{x} + \mathbf{Q}\mathbf{B}\mathbf{u} \Leftrightarrow \mathbf{Q}\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\mathbf{x} + \mathbf{C}^{T}\mathbf{u}$ $\mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} = -2\mathbf{R} \le 0 \quad \Leftrightarrow \quad \mathbf{R} \ge 0$

Special case: γ -contractive systems

Pick $\gamma > 0$ and take the supply rate to be: $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2} \left(\gamma^2 \|\mathbf{u}(t)\|^2 - \|\mathbf{y}(t)\|^2 \right) = \frac{1}{2} \left(\begin{array}{cc} \mathbf{y}^T \ \mathbf{u}^T \end{array} \right) \begin{bmatrix} -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \gamma^2 \mathbf{I} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \end{pmatrix}$ (defining $\mathbf{M} = \gamma^2 \mathbf{I}, \mathbf{N} = -\mathbf{I}$ and $\Omega = \mathbf{0}$)

and suppose H(x) is an associated quadratic storage function:

 $\mathsf{H}(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \mathbf{Q} \mathbf{x} \ \text{ for } \ \mathbf{Q} > 0.$

 The system is γ-contractive with the storage function H(x), if and only if Q is a positive-definite solution to the LMI:

$$\begin{bmatrix} \mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} + \mathbf{C}^{T}\mathbf{C} & \mathbf{Q}\mathbf{B} \\ \mathbf{B}^{T}\mathbf{Q} & -\gamma^{2}\mathbf{I} \end{bmatrix} \leq 0 \Leftrightarrow \begin{array}{c} \mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} + \mathbf{C}^{T}\mathbf{C} + \frac{1}{\gamma^{2}}\mathbf{Q}\mathbf{B}\mathbf{B}^{T}\mathbf{Q} \leq 0 \\ \text{(Riccati Matrix Inequality)} \end{array}$$

If G(s) = C(sI − A)⁻¹B is the transfer function for the system then the system is γ-contractive if and only if ||G||_{H∞} ≤ γ. This is an important property to insure when designing model-based stabilizing controllers that are robust to model uncertainty.

- Dissipative systems have realizations that encode energy flux constraints determined by the supply rate and the underlying dissipation framework via linear matrix inequalities (LMIs).
- Seek model reduction strategies that preserve this structure reduced order surrogate models that have high fidelity and respect original dissipation constraints (this is sensible because dissipation is an exogenous property).
- Warning ! Direct use of LMIs can be computationally untenable due to high model order. (Complexity can grow like $\mathcal{O}(n^4)$!)

Addressing this properly remains a topic of interest (and another talk...), but for the time being assume that a storage function, H(x), is known.

- H(x) is dependent on both the system realization and the supply rate.
- For linear time invariant systems with a quadratic supply rate, H(x) can be assumed to be quadratic without loss of generality.

Take the supply rate to be a general quadratic:

 $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2} (\mathbf{y}^T \mathbf{u}^T) \begin{bmatrix} -\mathbf{N} & \Omega \\ \Omega^T & \mathbf{M} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \end{pmatrix} \text{ with } \mathbf{M} \ge 0, \mathbf{N} \ge 0$

and H(x) is an associated quadratic storage function:

$$\mathsf{H}(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \mathbf{Q} \mathbf{x} \text{ for } \mathbf{Q} > 0.$$

(Original Realization)

$$\mathbf{Q}\dot{\mathbf{x}}_r = (\mathbf{J} - \mathbf{R})\mathbf{x} + \mathbf{Q}\mathbf{B}\mathbf{u}(\mathbf{x})$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}$$

(Dissipative Realization)

• $\mathbf{Q}\mathbf{A} = \mathbf{J} - \mathbf{R}$ with $\mathbf{J} = -\mathbf{J}^T$ and $\mathbf{R} = \mathbf{R}^T$ (skew-symm + symm).

• "Project dynamics" by approximating $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$:

 $\mathbf{V}_r^T \mathbf{Q} \left(\mathbf{V}_r \dot{\mathbf{x}}_r(t) - \mathbf{A} \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{B} \mathbf{u}(t) \right) = 0$ (Petrov-Galerkin)

or equivalently,

 $\mathbf{V}_r^T \left(\mathbf{Q} \mathbf{V}_r \dot{\mathbf{x}}_r(t) - (\mathbf{J} - \mathbf{R}) \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{Q} \mathbf{B} \mathbf{u}(t) \right) = 0 \quad \text{(Ritz-Galerkin)}$ for some choice of subspace $\mathcal{V}_r = \text{Ran}(\mathbf{V}_r)$.

Take the supply rate to be a general quadratic:

 $w(\mathbf{y}(t), \mathbf{u}(t)) = \frac{1}{2} (\mathbf{y}^T \mathbf{u}^T) \begin{bmatrix} -\mathbf{N} & \Omega \\ \Omega^T & \mathbf{M} \end{bmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \end{pmatrix} \text{ with } \mathbf{M} \ge 0, \mathbf{N} \ge 0$

and H(x) is an associated quadratic storage function:

$$\mathsf{H}(\mathbf{x}) = \frac{1}{2} \, \mathbf{x}^T \mathbf{Q} \mathbf{x} \text{ for } \mathbf{Q} > 0.$$

$$\mathbf{Q}\dot{\mathbf{x}}_r = (\mathbf{J} - \mathbf{R})\mathbf{x} + \mathbf{Q}\mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\,\mathbf{x}$$

(Dissipative Realization)

• $\mathbf{Q}\mathbf{A} = \mathbf{J} - \mathbf{R}$ with $\mathbf{J} = -\mathbf{J}^T$ and $\mathbf{R} = \mathbf{R}^T$ (skew-symm + symm).

• "Project dynamics" by approximating $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$:

 $\mathbf{V}_r^T \mathbf{Q} \left(\mathbf{V}_r \dot{\mathbf{x}}_r(t) - \mathbf{A} \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{B} \mathbf{u}(t) \right) = 0$ (Petrov-Galerkin)

or equivalently,

 $\mathbf{V}_r^T \left(\mathbf{Q} \mathbf{V}_r \dot{\mathbf{x}}_r(t) - (\mathbf{J} - \mathbf{R}) \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{Q} \mathbf{B} \mathbf{u}(t) \right) = 0 \quad \text{(Ritz-Galerkin)}$ for some choice of subspace $\mathcal{V}_r = \text{Ran}(\mathbf{V}_r)$.

 $\begin{aligned} \mathbf{Q}\dot{\mathbf{x}} &= (\mathbf{J} - \mathbf{R})\mathbf{x} + \mathbf{Q}\mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C}\,\mathbf{x} \end{aligned}$

(Dissipative realization)

 $\mathbf{Q}_r \dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r)\mathbf{x}_r + \mathbf{Q}_r \mathbf{B}_r \mathbf{u}(t)$ $\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r$

(Reduced dissipative model)

• $\mathbf{V}_r^T (\mathbf{Q} \mathbf{V}_r \dot{\mathbf{x}}_r(t) - (\mathbf{J} - \mathbf{R}) \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{Q} \mathbf{B} \mathbf{u}(t)) = 0$ (Ritz-Galerkin) for some choice of subspace $\mathcal{V}_r = \operatorname{Ran}(\mathbf{V}_r)$.

Leads to a reduced model defined by

$$\mathbf{Q}_r = \mathbf{V}_r^T \mathbf{Q} \mathbf{V}_r, \quad \mathbf{J}_r = \mathbf{V}_r^T \mathbf{J} \mathbf{V}_r, \quad \mathbf{R}_r = \mathbf{V}_r^T \mathbf{R} \mathbf{V}_r,$$

 $\mathbf{C}_r = \mathbf{C} \mathbf{V}_r, \quad \mathbf{B}_r = \mathbf{Q}_r^{-1} \mathbf{V}_r^T \mathbf{Q} \mathbf{B}$

Is this reduced model dissipative with respect to the same supply rate ?

The reduced model is defined by

$$\mathbf{Q}_r = \mathbf{V}_r^T \mathbf{Q} \mathbf{V}_r, \quad \mathbf{J}_r = \mathbf{V}_r^T \mathbf{J} \mathbf{V}_r, \quad \mathbf{R}_r = \mathbf{V}_r^T \mathbf{R} \mathbf{V}_r, \quad \mathbf{C}_r = \mathbf{C} \mathbf{V}_r, \quad \mathbf{B}_r = \mathbf{Q}_r^{-1} \mathbf{V}_r^T \mathbf{Q} \mathbf{B}$$

• Evidently, $\mathbf{Q}_r > 0$, $\mathbf{J}_r = -\mathbf{J}_r^T$ and $\mathbf{R}_r = \mathbf{R}_r^T$.

The original storage, $\mathbf{Q} > 0$, solves

$$\begin{bmatrix} \mathbf{Q}\mathbf{A} + \mathbf{A}^{T}\mathbf{Q} + \mathbf{C}^{T}\mathbf{N}\mathbf{C} & \mathbf{Q}\mathbf{B} - \mathbf{C}^{T}\Omega \\ \mathbf{B}^{T}\mathbf{Q} - \Omega^{T}\mathbf{C} & -\mathbf{M} \end{bmatrix} = \begin{bmatrix} -2\mathbf{R} + \mathbf{C}^{T}\mathbf{N}\mathbf{C} & \mathbf{Q}\mathbf{B} - \mathbf{C}^{T}\Omega \\ \mathbf{B}^{T}\mathbf{Q} - \Omega^{T}\mathbf{C} & -\mathbf{M} \end{bmatrix} \leq 0$$
$$\implies \begin{bmatrix} \mathbf{Q}_{r}\mathbf{A}_{r} + \mathbf{A}_{r}^{T}\mathbf{Q}_{r} + \mathbf{C}_{r}^{T}\mathbf{N}\mathbf{C}_{r} & \mathbf{Q}_{r}\mathbf{B}_{r} - \mathbf{C}_{r}^{T}\Omega \\ \mathbf{B}_{r}^{T}\mathbf{Q}_{r} - \Omega^{T}\mathbf{C} & -\mathbf{M} \end{bmatrix} = \begin{bmatrix} -2\mathbf{R}_{r} + \mathbf{C}_{r}^{T}\mathbf{N}\mathbf{C}_{r} & \mathbf{Q}_{r}\mathbf{B}_{r} - \mathbf{C}_{r}^{T}\Omega \\ \mathbf{B}_{r}^{T}\mathbf{Q}_{r} - \Omega^{T}\mathbf{C}_{r} & -\mathbf{M} \end{bmatrix} = \begin{bmatrix} -2\mathbf{R}_{r} + \mathbf{C}_{r}^{T}\mathbf{N}\mathbf{C}_{r} & \mathbf{Q}_{r}\mathbf{B}_{r} - \mathbf{C}_{r}^{T}\Omega \\ \mathbf{B}_{r}^{T}\mathbf{Q}_{r} - \Omega^{T}\mathbf{C}_{r} & -\mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{r}^{T}\mathbf{0} \\ \mathbf{B}_{r}^{T}\mathbf{Q}_{r} - \Omega^{T}\mathbf{C}_{r} & -\mathbf{M} \end{bmatrix}$$

• Thus, $\mathbf{R}_r \ge 0$ and $\mathbf{A}_r = \mathbf{Q}_r^{-1}(\mathbf{J}_r - \mathbf{R}_r)$ is asymp stable.

• \Rightarrow The reduced system will be dissipative for *any* choice of \mathcal{V}_r

Finding effective reduced order dissipative models

$$Q\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\mathbf{x} + Q\mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\,\mathbf{x}$$

 \longrightarrow

(Original dissipative realization)

$$\mathbf{Q}_r \dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r)\mathbf{x}_r + \widehat{\mathbf{B}}_r \mathbf{u}(t)$$
$$\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r$$

(Reduced dissipative realization)

• Fourier Transforms: $\mathbf{u}(t) \mapsto \hat{\mathbf{u}}(\omega)$, $\mathbf{y}(t) \mapsto \hat{\mathbf{y}}(\omega)$ Original response: $\hat{\mathbf{y}}(\omega) = \mathbf{g}(\imath\omega)\hat{\mathbf{u}}(\omega)$ Reduced response: $\hat{\mathbf{y}}_r(\omega) = \mathbf{g}_r(\imath\omega)\hat{\mathbf{u}}(\omega)$

with transfer functions:

 $\mathfrak{G}(s) = \mathbf{C}(s\mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1}\mathbf{Q}\mathbf{B} \text{ and } \mathfrak{G}_r(s) = \mathbf{C}_r(s\mathbf{Q}_r - (\mathbf{J}_r - \mathbf{R}_r))^{-1}\widehat{\mathbf{B}}_r.$

•
$$\hat{\mathbf{y}}(\omega) - \hat{\mathbf{y}}_r(\omega) = \left(\mathbf{g}(\imath\omega) - \mathbf{g}_r(\imath\omega)\right)\hat{\mathbf{u}}(\omega)$$

Find a modeling space \mathcal{V}_r so that $\mathfrak{G}_r(\iota\omega) \approx \mathfrak{G}(\iota\omega)$ for $\omega \in \mathbb{R}$.

Find a reduction space \mathcal{V}_r so that $\mathcal{G}_r(\iota\omega) \approx \mathcal{G}(\iota\omega)$ for $\omega \in \mathbb{R}$ and $\mathcal{G}_r(s)$ is dissipative wrt same supply rate as \mathcal{G} .

Heuristic: \mathcal{G}_r will be a best (rational) approximation to \mathcal{G} when $|\mathcal{G}(\iota\omega) - \mathcal{G}_r(\iota\omega)| \approx \text{ constant for } \omega \in \mathbb{R}$ (SISO case).

- ⇒ Suggests that symmetric distribution of poles and zeros of $|\mathcal{G}(s) \mathcal{G}_r(s)|$ will be optimal. ⇒ Interpolate !
 - zeros are points of interpolation,
 poles include the poles of G_r which are computatable
 - Iteratively rebalance pole/zero distribution by forming dissipative interpolants. Similar process for H₂/H_∞-quasioptimal schemes for port-Hamiltonian reduction "PH-IRKA". (more on this later...)
 - MIMO case is similar but interpolation occurs only in tangent directions given by (vector) residues of G_r(s).

Construct a modeling subspace V_r that forces interpolation.

Interpolatory projections that preserve dissipativity

Given interpolation points $\sigma_1, ..., \sigma_r$ and

tangent directions $\mathbf{b}_1, ..., \mathbf{b}_r$, construct

 $\mathbf{V}_r = [(\sigma_1 \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_1, \dots, (\sigma_r \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_r].$

Then with $\mathbf{Q}_r = \mathbf{V}_r^T \mathbf{Q} \mathbf{V}_r$, $\mathbf{J}_r = \mathbf{V}_r^T \mathbf{J} \mathbf{V}_r$, $\mathbf{R}_r = \mathbf{V}_r^T \mathbf{R} \mathbf{V}_r$, $\mathbf{C}_r = \mathbf{C} \mathbf{V}_r$, $\mathbf{Q}_r \mathbf{B}_r = \mathbf{V}_r^T \mathbf{Q} \mathbf{B}$ the reduced model, $\mathcal{G}_r : \begin{cases} \mathbf{Q}_r \dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \mathbf{x}_r + \mathbf{Q}_r \mathbf{B}_r \mathbf{u}, \\ \mathbf{y}_r = \mathbf{C}_r \mathbf{x}_r \end{cases}$

is stable, minimal, dissipative wrt the given supply rate, w,

and $\mathbf{g}_r(\sigma_i)\mathbf{b}_i = \mathbf{g}(\sigma_i)\mathbf{b}_i$ for i = 1, ..., r.

How to choose interpolation points ?

- $\Phi(s) = \log |\mathbf{g}(s) \mathbf{g}_r(s)|$ is a potential function
 - · has positive singularities at system eigenvalues.
 - · has negative singularities at interpolation points.
 - · is harmonic everywhere else electrostatic analogy
- Locate interpolation points (negative point charges) to balance equipotentials of $\log |\mathfrak{G}(s) \mathfrak{G}_r(s)|$ (makes $\log |\mathfrak{G}(s) \mathfrak{G}_r(s)|$ nearly constant along the imaginary axis)
- Interpolate at points that mirror singularities across the imaginary axis (but there are too many !)
- So mirror "equivalent charges" instead; e.g., Ritz values.
 (which are the poles of the reduced dissipative model, *G_r*).

(Near) Best Dissipative Reduced Approximation

$$\begin{array}{c} \mathbf{\mathfrak{G}}(s) = \mathbf{C}(s\mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1}\mathbf{Q}\mathbf{B} \\ \\ \text{(Original system)} \end{array} \longrightarrow \begin{array}{c} \mathbf{\mathfrak{H}}_r(s) = \mathbf{C}_r(s\mathbf{Q}_r - (\mathbf{J}_r - \mathbf{R}_r))^{-1}\mathbf{Q}_r\mathbf{B}_r \\ \\ \text{(Reduced system)} \end{array}$$

- Force $\mathfrak{G}(-\widehat{\lambda}_k) = \mathfrak{G}_r(-\widehat{\lambda}_k)$ at reduced system poles: $\widehat{\lambda}_1, \widehat{\lambda}_2, \dots, \widehat{\lambda}_r$.
- By choosing an subspace V_r that forces symmetric interpolation, we expect
 G_r(ιω) ≈ G(ιω) for ω ∈ ℝ and also G_r(s) is a dissipative system with respect to the same supply rate.
- MIMO case: if $\mathfrak{G}_r(s) = \sum_{k=1}^r \frac{\mathfrak{c}_k \mathbb{b}_k^T}{s \widehat{\lambda}_k}$ then force $\mathfrak{g}(-\widehat{\lambda}_k)\mathbb{b}_k = \mathfrak{g}_r(-\widehat{\lambda}_k)\mathbb{b}_k$. (also a necc condition for \mathcal{H}_2 -optimality)

Dissipation-preserving Model Reduction

Iterative correction to force interpolation at reflected reduced order poles: $\mathfrak{G}_r(-\widehat{\lambda}_k)\mathbb{B}_k = \mathfrak{G}(-\widehat{\lambda}_k)\mathbb{B}_k$ for $k = 1, \ldots, r$

Algorithm ($\mathcal{H}_{\infty}/\mathcal{H}_2$ -based MOR for dissipative systems)

Make an initial shift selection $\{\sigma_i\}_1^r$, and tangent directions $\{\mathbf{b}_i\}_1^r$.

while (not converged)

•
$$\mathbf{V}_r = [(\sigma_1 \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_1, \dots, (\sigma_r \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_r]$$

- **2** Set $\widehat{\mathbf{V}_r} = \mathbf{V}_r \mathbf{L}^{-1}$ with $\mathbf{V}_r^T \mathbf{Q} \mathbf{V}_r = \mathbf{L}^T \mathbf{L}$ (so $\mathbf{Q}_r = \widehat{\mathbf{V}_r}^T \mathbf{Q} \widehat{\mathbf{V}_r} = \mathbf{I}_r$).
- Set $\mathbf{J}_r = \widehat{\mathbf{V}}_r^T \mathbf{J} \widehat{\mathbf{V}}_r$, $\mathbf{R}_r = \widehat{\mathbf{V}}_r^T \mathbf{R} \widehat{\mathbf{V}}_r$, and $\mathbf{B}_r = \widehat{\mathbf{V}}_r^T \mathbf{Q} \mathbf{B}_r$.
- 3 Calculate left eigenvectors: $\mathbf{w}_i^T (\mathbf{J}_r \mathbf{R}_r) = \widehat{\lambda}_i \mathbf{w}_i^T$.
- Set $\sigma_i \leftarrow -\widehat{\lambda}_i$ and $\mathbf{b}_i \leftarrow \mathbf{B}_r^T \mathbf{w}_i$ for $i = 1, \dots, r$

Calculate final reduced dissipative system: Find $\mathbf{V}_r = [(\sigma_1 \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_1, \dots, (\sigma_r \mathbf{Q} - (\mathbf{J} - \mathbf{R}))^{-1} \mathbf{Q} \mathbf{B} \mathbf{b}_r].$ Set $\widehat{\mathbf{V}_r} = \mathbf{V}_r \mathbf{L}^{-1}$ with $\mathbf{V}_r^T \mathbf{Q} \mathbf{V}_r = \mathbf{L}^T \mathbf{L}$, and $\widehat{\mathbf{W}}_r = \mathbf{Q} \widehat{\mathbf{V}_r}.$ Set $\mathbf{J}_r = \widehat{\mathbf{V}_r^T} \mathbf{J} \widehat{\mathbf{V}_r}$, $\mathbf{R}_r = \widehat{\mathbf{V}_r^T} \mathbf{R} \widehat{\mathbf{V}_r}$, $\mathbf{B}_r = \widehat{\mathbf{V}_r^T} \mathbf{Q} \mathbf{B}$, and $\mathbf{Q}_r = \mathbf{I}_r.$

(Gugercin, Polyuga, B, and van der Schaft, 2010) for passivity-preserving case

Extension to nonlinear systems (passive case)

Linear: $\begin{vmatrix} \mathbf{Q}\dot{\mathbf{z}} = (\mathbf{J} - \mathbf{R}) \\ \mathbf{y}(t) = \end{vmatrix}$

$$\begin{array}{c|c} \mathbf{R} & \mathbf{z} + \mathbf{C}^T \mathbf{u}(t) \\ = \mathbf{C} \, \mathbf{z} \end{array} \quad \text{with } \mathbf{Q} > \mathbf{0}, \, \mathbf{J} = -\mathbf{J}^T, \, \text{and } \mathbf{R} = \mathbf{R}^T \geq \mathbf{0}. \end{array}$$

Nonlinear case:

$$[\nabla^2 \mathcal{E}(\mathbf{z})] \cdot \dot{\mathbf{z}} = (\mathbf{J} - \mathbf{R})\mathbf{z} + \mathbf{C}^T \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \,\mathbf{z}$$

with $\mathcal{E}(\mathbf{z})$ uniformly convex, $\mathbf{J} = -\mathbf{J}^T$, and $\mathbf{R} = \mathbf{R}^T \ge \mathbf{0}$. **J**, **R**, and **C** could all depend on **z** as well.

Alternative (conjugate) representation: Define $\mathbf{x} = \nabla \mathcal{E}(\mathbf{z})$ and $H(\mathbf{x}) = \sup_{\mathbf{z}} (\mathbf{x}^T \mathbf{z} - \mathcal{E}(\mathbf{z}))$. $\implies \mathbf{z} = \nabla H(\mathbf{x})$. Then $\begin{bmatrix} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{x}) + \mathbf{C}^T \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \nabla_{\mathbf{x}} H(\mathbf{x}) \end{bmatrix}$ $H(\mathbf{x})$ defines a *storage* function. $H(\mathbf{x})$ is uniformly convex, $\mathbf{J} = -\mathbf{J}^T$, and $\mathbf{R} = \mathbf{R}^T \ge \mathbf{0}$. \mathbf{J}, \mathbf{R} , and \mathbf{C} now all depend (potentially) on \mathbf{x} .

This is a "port-Hamiltonian" representation of the system.

Multi-Input/Multi-Output (MIMO) systems:

$$\mathbf{u}(t) \longrightarrow \frac{\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t)}{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

- $H : \mathbb{R}^n \to [0, \infty)$ is the *Hamiltonian*, defining the system internal energy as a function of instantaneous *state*, $\mathbf{x}(t)$.
- **J** = -**J**^{*T*} is the *structure matrix* describing interconnection of energy storage components. (e.g., Kirchoff's Laws).
- **R** = **R**^T ≥ **0** is the *dissipation matrix* describing internal energy losses.
- Generalizes classical Hamiltonian systems: $\dot{\mathbf{x}} = \mathbf{J} \nabla_{\mathbf{x}} H(\mathbf{x})$.

$$\mathbf{u}(t) \longrightarrow \boxed{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always stable and passive:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \le \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$$
 ($\Delta H \le \text{total work}$).

Why?

$$\mathbf{u}(t) \longrightarrow \underbrace{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}}_{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always stable and passive:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \le \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$$
 ($\Delta H \le \text{total work}$).

Why?

 $\frac{d}{dt}H(\mathbf{x}(t)) = \nabla_{\mathbf{x}}H(\mathbf{x})^T \dot{\mathbf{x}}$

$$\mathbf{u}(t) \longrightarrow \underbrace{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}}_{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always stable and passive:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \leq \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$$
 ($\Delta H \leq \text{total work}$).

Why?

$$\begin{aligned} \frac{d}{dt}H(\mathbf{x}(t)) &= \nabla_{\mathbf{x}}H(\mathbf{x})^T \, \dot{\mathbf{x}} \\ &= \nabla_{\mathbf{x}}H(\mathbf{x})^T \, (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \nabla_{\mathbf{x}}H(\mathbf{x})^T \, \mathbf{C}^T \mathbf{u}(t) \end{aligned}$$

$$\mathbf{u}(t) \longrightarrow \underbrace{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}}_{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always stable and passive:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \leq \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$$
 ($\Delta H \leq \text{total work}$).

Why?

_

$$\begin{aligned} \frac{d}{dt}H(\mathbf{x}(t)) &= \nabla_{\mathbf{x}}H(\mathbf{x})^{T} \dot{\mathbf{x}} \\ &= \nabla_{\mathbf{x}}H(\mathbf{x})^{T} (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \nabla_{\mathbf{x}}H(\mathbf{x})^{T} \mathbf{C}^{T}\mathbf{u}(t) \\ &= -\nabla_{\mathbf{x}}H(\mathbf{x})^{T}\mathbf{R}\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{y}(t)^{T}\mathbf{u}(t) \leq \mathbf{y}(t)^{T}\mathbf{u}(t) \\ &\leq 0 \qquad \text{"power"} \end{aligned}$$

$$\mathbf{u}(t) \longrightarrow \underbrace{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}}_{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always *stable* and *passive*:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \le \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) dt$$
 ($\Delta H \le \text{total work}$).

• Closed under (power conserving) interconnection.

$$\mathbf{u}(t) \longrightarrow \underbrace{\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x}) \end{array}}_{\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})} \longrightarrow \mathbf{y}(t)$$

Advantageous Features:

• PH systems are always *stable* and *passive*:

$$H(\mathbf{x}_1) - H(\mathbf{x}_0) \leq \int_{t_0}^{t_1} \mathbf{y}(t)^T \mathbf{u}(t) \ dt \quad (\Delta H \leq \text{total work}).$$

• Closed under (power conserving) interconnection.

State space dimension, *n*, can be very large: $n \gg \dim \mathbf{u} = \dim \mathbf{y}$. The input-output map $\mathbf{u} \mapsto \mathbf{y}$ is of primary interest. "Internal state" $\mathbf{x}(t)$ is of secondary interest.

Goal: Reduce state space dimension without degrading input-output response; keep advantageous system features.

Maintain high fidelity and physical consistency ("structure")

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})$$

(Original system)

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{C}_r^T \mathbf{u}(t)$$
$$\mathbf{y}_r(t) = \mathbf{C}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r)$$

(Reduced system)

Want outputs to remain close, $\mathbf{y}_r(t) \approx \mathbf{y}(t)$, over a large class of possible inputs $\mathbf{u}(t)$.

Usual approach: Eliminate low value portions of state space.

$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\nabla_{\mathbf{x}}H(\mathbf{x}) + \mathbf{C}^{T}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\nabla_{\mathbf{x}}H(\mathbf{x})$$

(Original system)

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{C}_r^T \mathbf{u}(t)$$
$$\mathbf{y}_r(t) = \mathbf{C}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r)$$

(Reduced system)

Want outputs to remain close, $\mathbf{y}_r(t) \approx \mathbf{y}(t)$, over a large class of possible inputs $\mathbf{u}(t)$.

Usual approach: Eliminate low value portions of state space.

Find subspaces V_r , W_r such that

- $\mathbf{x}(t)$ stays close to $\mathcal{V}_r \implies \mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$
- $\nabla_{\mathbf{x}} H(\mathbf{x}(t))$ stays close to $\mathcal{W}_r \implies \nabla_{\mathbf{x}} H(\mathbf{x}(t)) \approx \mathbf{W}_r \mathbf{h}_r(t)$

... and neither \mathcal{V}_r nor \mathcal{W}_r depends on the input, $\mathbf{u}(t)$.

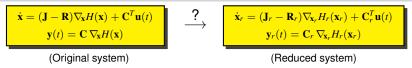
Assume that subspaces V_r and W_r have been found so that

 $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$ and $\nabla_{\mathbf{x}} H(\mathbf{x}(t)) \approx \mathbf{W}_r \mathbf{h}_r(t)$.

How is a reduced PH system determined ?

Note that $\mathbf{W}_r \mathbf{h}_r(t) \approx \nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t))$ implies $\mathbf{V}_r^T \mathbf{W}_r \mathbf{h}_r(t) \approx \mathbf{V}_r^T \nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) = \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$ with a "reduced energy": $H_r(\mathbf{x}_r(t)) = H(\mathbf{V}_r \mathbf{x}_r(t))$

So, if biorthogonal bases for \mathcal{V}_r and \mathcal{W}_r are chosen (so $\mathbf{V}_r^T \mathbf{W}_r = \mathbf{I}$) then $\mathbf{h}_r(t) \approx \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$



Substitute $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$ and $\nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) \approx \mathbf{W}_r \mathbf{h}_r(t) \approx \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$

$$\begin{aligned} \mathbf{V}_r \dot{\mathbf{x}}_r(t) &= (\mathbf{J} - \mathbf{R}) \mathbf{W}_r \, \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) + \mathbf{C}^T \mathbf{u}(t) \\ \mathbf{y}_r(t) &= \mathbf{C} \, \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) \end{aligned}$$

 $\begin{aligned} \dot{\mathbf{x}}_r(t) &= (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) + \mathbf{C}_r^T \mathbf{u}(t) \\ \mathbf{y}_r(t) &= \mathbf{C}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) \\ \text{with } \mathbf{J}_r &= \mathbf{W}_r^T \mathbf{J} \mathbf{W}_r, \, \mathbf{R}_r = \mathbf{W}_r^T \mathbf{R} \mathbf{W}_r, \\ \mathbf{C}_r &= \mathbf{C} \mathbf{W}_r, \, \text{and} \, H_r(\mathbf{x}_r) = H(\mathbf{V}_r \mathbf{x}_r). \end{aligned}$

$$\begin{aligned} \dot{\mathbf{x}} &= (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{x}) + \mathbf{C}^{T} \mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C} \nabla_{\mathbf{x}} H(\mathbf{x}) \end{aligned} \xrightarrow{?} \qquad \underbrace{\dot{\mathbf{x}}_{r} &= (\mathbf{J}_{r} - \mathbf{R}_{r}) \nabla_{\mathbf{x}_{r}} H_{r}(\mathbf{x}_{r}) + \mathbf{C}_{r}^{T} \mathbf{u}(t) \\ \mathbf{y}_{r}(t) &= \mathbf{C}_{r} \nabla_{\mathbf{x}_{r}} H_{r}(\mathbf{x}_{r}) \end{aligned}$$
(Original system) (Reduced system)

Substitute $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$ and $\nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) \approx \mathbf{W}_r \mathbf{h}_r(t) \approx \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$

$$\mathbf{W}_r^T \mathbf{V}_r \dot{\mathbf{x}}_r(t) = \mathbf{W}_r^T (\mathbf{J} - \mathbf{R}) \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) + \mathbf{W}_r^T \mathbf{C}^T \mathbf{u}(t)$$

$$\mathbf{y}_r(t) = \mathbf{C} \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$$

$$\begin{aligned} \dot{\mathbf{x}}_r(t) &= (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) + \mathbf{C}_r^T \mathbf{u}(t) \\ \mathbf{y}_r(t) &= \mathbf{C}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) \\ \text{with } \mathbf{J}_r &= \mathbf{W}_r^T \mathbf{J} \mathbf{W}_r, \, \mathbf{R}_r = \mathbf{W}_r^T \mathbf{R} \mathbf{W}_r, \\ \mathbf{C}_r &= \mathbf{C} \mathbf{W}_r, \, \text{and} \, H_r(\mathbf{x}_r) = H(\mathbf{V}_r \mathbf{x}_r). \end{aligned}$$

$$\begin{array}{c} \dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R}) \nabla_{\mathbf{x}} H(\mathbf{x}) + \mathbf{C}^{T} \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \nabla_{\mathbf{x}} H(\mathbf{x}) \end{array} \xrightarrow{?} \qquad \begin{array}{c} \dot{\mathbf{x}}_{r} = (\mathbf{J}_{r} - \mathbf{R}_{r}) \nabla_{\mathbf{x}_{r}} H_{r}(\mathbf{x}_{r}) + \mathbf{C}_{r}^{T} \mathbf{u}(t) \\ \mathbf{y}_{r}(t) = \mathbf{C}_{r} \nabla_{\mathbf{x}_{r}} H_{r}(\mathbf{x}_{r}) \end{array}$$

$$(Original system) \qquad (Reduced system)$$

Substitute $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$ and $\nabla_{\mathbf{x}} H(\mathbf{V}_r \mathbf{x}_r(t)) \approx \mathbf{W}_r \mathbf{h}_r(t) \approx \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$

$$\mathbf{W}_r^T \mathbf{V}_r \dot{\mathbf{x}}_r(t) = \mathbf{W}_r^T (\mathbf{J} - \mathbf{R}) \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t)) + \mathbf{W}_r^T \mathbf{C}^T \mathbf{u}(t)$$

$$\mathbf{y}_r(t) = \mathbf{C} \mathbf{W}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r(t))$$

$$\dot{\mathbf{x}}_{r}(t) = (\mathbf{J}_{r} - \mathbf{R}_{r})\nabla_{\mathbf{x}_{r}}H_{r}(\mathbf{x}_{r}(t)) + \mathbf{C}_{r}^{T}\mathbf{u}(t)$$

$$\mathbf{y}_{r}(t) = \mathbf{C}_{r}\nabla_{\mathbf{x}_{r}}H_{r}(\mathbf{x}_{r}(t))$$
with $\mathbf{J}_{r} = \mathbf{W}_{r}^{T}\mathbf{J}\mathbf{W}_{r}, \mathbf{R}_{r} = \mathbf{W}_{r}^{T}\mathbf{R}\mathbf{W}_{r},$

$$\mathbf{C}_{r} = \mathbf{C}\mathbf{W}_{r}, \text{ and } H_{r}(\mathbf{x}_{r}) = H(\mathbf{V}_{r}\mathbf{x}_{r}).$$

POD for port-Hamiltonian systems (POD-PH)

Algorithm (POD-based MOR for port-Hamiltonian systems)

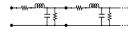
- Generate trajectory $\mathbf{x}(t)$, and collect snapshots: $\mathbb{X} = [\mathbf{x}(t_0), \mathbf{x}(t_1), \mathbf{x}(t_2), \dots, \mathbf{x}(t_N)].$
- 2 Truncate SVD of snapshot matrix, \mathbb{X} , to get POD basis, $\widetilde{\mathbf{V}}_r$, for the state space variables. Then $\mathbf{x}(t) \approx \widetilde{\mathbf{V}}_r \tilde{\mathbf{x}}_r(t)$
- **3** Collect associated force snapshots: $\mathbb{F} = [\nabla_{\mathbf{x}} H(\mathbf{x}(t_0)), \nabla_{\mathbf{x}} H(\mathbf{x}(t_1)), \dots, \nabla_{\mathbf{x}} H(\mathbf{x}(t_N))].$
- **3** Truncate SVD of \mathbb{F} to get a second POD basis, $\widetilde{\mathbf{W}}_r$, spanning approximate range of $\nabla_{\mathbf{x}} H(\mathbf{x}(t)) \approx \widetilde{\mathbf{W}}_r \tilde{\mathbf{h}}_r(t)$.
 - Change bases $\widetilde{\mathbf{W}}_r \mapsto \mathbf{W}_r$ and $\widetilde{\mathbf{V}}_r \mapsto \mathbf{V}_r$ such that $\mathbf{W}_r^T \mathbf{V}_r = \mathbf{I}$.

The POD-PH reduced system is

$$\dot{\mathbf{x}}_r = (\mathbf{J}_r - \mathbf{R}_r) \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r) + \mathbf{C}_r^T \mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r \nabla_{\mathbf{x}_r} H_r(\mathbf{x}_r)$$

with $\mathbf{J}_r = \mathbf{W}_r^T \mathbf{J} \mathbf{W}_r$, $\mathbf{R}_r = \mathbf{W}_r^T \mathbf{R} \mathbf{W}_r$, $\mathbf{C}_r = \mathbf{C} \mathbf{W}_r$, and $H_r(\mathbf{x}_r) = H(\mathbf{V}_r \mathbf{x}_r)$.

Nonlinear Ladder Network Example

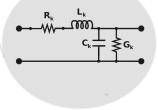


Network of 100 identical LC cells.

Nonlinear capacitors: $C_k(V) = \frac{C_0 V_0}{V + V_0}$

Input: left Voltage signal; right current injection

Output left induced current; right Voltage signal (focus on left V \rightarrow right V map)

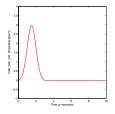


Nonlinear Ladder Network

Inductor -
$$\begin{cases} L_{k} = L_{0} = 1\mu H \\ R_{k} = R_{0} = 1\Omega \end{cases}$$

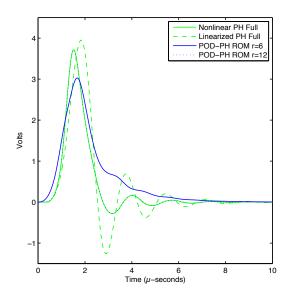
Capacitor -
$$\begin{cases} C_{k}(V) = \frac{C_{0}V_{0}}{V + V_{0}}: & C_{0} = 70pF \\ C_{k}(V) = \frac{C_{0}V_{0}}{V + V_{0}}: & V_{0} = 1.8V \\ G_{k} = G_{0} = 30\mu\mho \end{cases}$$

Nonlinear Ladder Network



Input: Gaussian pulse (3V pk)

ROM w/order r=12 accurate to 3.e-3



Augment the reduction subspaces

POD-PH provides an empirically driven choice for \mathcal{V}_r and \mathcal{W}_r

- ... tied to an input ensemble
 - \Rightarrow Only as good as the input ensembles chosen.

Other subspaces may be considered to replace/supplement POD:

• Find a choice of subspaces that is *asymptotically optimal* for small **u** (hence for small **x**).

 $\nabla_{\! x} H(x) \approx Q^{-1} x$ for a symmetric positive definite $Q \in \mathbb{R}^{n \times n}$. (e.g., $Q = \nabla^2 \mathcal{E}(0)$)

Leads to consideration of Linear Port-Hamiltonian Systems

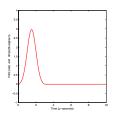
$$\dot{\mathbf{x}} = (\mathbf{J} - \mathbf{R})\mathbf{Q}^{-1}\mathbf{x} + \mathbf{C}^{T}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C} \mathbf{Q}^{-1}\mathbf{x}$$
(Original system)
$$\longrightarrow \qquad \dot{\mathbf{x}}_{r} = (\mathbf{J}_{r} - \mathbf{R}_{r})\mathbf{Q}_{r}^{-1}\mathbf{x}_{r} + \mathbf{C}_{r}^{T}\mathbf{u}(t)$$

$$\mathbf{y}_{r}(t) = \mathbf{C}_{r}\mathbf{Q}_{r}^{-1}\mathbf{x}_{r}$$
(Reduced system)

Find (sub)*optimal subspaces* for the linearized system; use them to augment the POD subspaces to reduce the original nonlinear system.

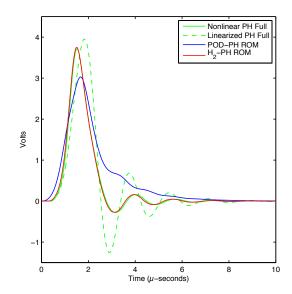
Ladder Network with POD/ensemble-free subspaces



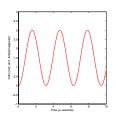
Input: Gaussian pulse (3V pk)

POD-PH w/order r=6

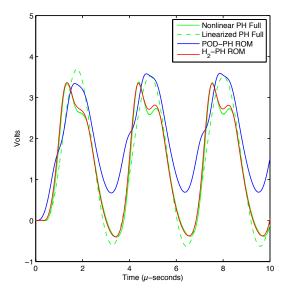
 $\mathcal{H}_{\infty}/\mathcal{H}_2$ -PH w/order r=6 (roughly same accuracy as POD-PH w/order r=12)



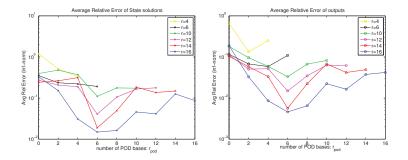
Ladder Network with POD/ensemble-free subspaces



Input: sinusoid (3V pk) POD-PH w/order r=6 $\mathcal{H}_{\infty}/\mathcal{H}_2$ -PH w/order r=6



Combining POD and ensemble-free bases.



- POD is very accurate in capturing observed dynamics (with respect to a particular choice of input ensemble) — but not unobserved yet feasible dynamics.
- Enrich this POD basis by including components that are optimized for *arbitrary* (small) virtual inputs (e.g., the ensemble-free H_∞/H₂-adapted bases).
- While the POD component brings in accurate approximations for inputs *similar* to the training ensemble, the linear optimal component may be expected to correctly adapt system behavior for as yet unobserved inputs.
- For any choice of reduction bases, the reduced system approximations remain structurally similar to the original system and in particular, will always be stable and passive.

Conclusions

- Reviewed basic notions of dissipative systems for LTI systems.
 - Key point: dissipativity is an exogenous property tied to a specific supply rate, not tied to a particular realization.
 - A particular realization gives rise to a family of storage functions (parameterized by solutions to an LMI).
- Introduced an interpolatory projection method that preserves dissipative system structure.
 - + Pro: Allows arbitrary state-space projection gives potential for high-fidelity
 - Con: Requires knowledge of a storage function

(potentially intractable for large order)

Nonlinear extensions for passive dynamical systems

Port-Hamiltonian systems

- Ensemble-based POD methods that preserve passivity.
- ▷ Ensemble-free, asymptotically optimal methods that preserve passivity.
- Combination of ensemble-based and ensemble-free bases.

Key point: turn an implicitly defined exogenous feature of the system (dissipativity) into an explicit structural feature for a realization that can be preserved with high fidelity model reduction strategies.