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Outline for Second Lecture

Implicitly Structured Dynamical Systems
Energy-based Modeling and Reduction

Basic energy-based modeling notions for dynamical systems.

� Supply rates and dissipativity for linear dynamical systems

� Storage functions and Linear Matrix Inequalities

� Preserving dissipativity with interpolatory model reduction

Structurally passive nonlinear dynamical systems: port-Hamiltonian
systems

� Ensemble-based methods (POD)

� Ensemble-free methods built on interpolatory methods



Goals of Model Reduction

Subsystem 1
u1←−
−→
y1

Main Sys for Analysis
u3−→
←−
y3

Subsystem 3

u2 ↓ ↑ y2

Subsystem 2

Replace high-order complex subsystems with low-order,
(but high-fidelity) surrogates. Encode high resolution/fine grain structure
of the subsystem response acquired offline into compact, efficient online
surrogates.

Avoid using (expensive) human resources. Want the process to be
(relatively) automatic and capable of producing reliable high-fidelity
surrogates.

Should respect underlying “physics” High fidelity may not be enough -
surrogate models should behave “physically” and respect underlying
conservation laws.



Energy-based modeling of dynamical systems

DynSys: u(t) ∈ U −→ ẋ = A x + B u(t)

y(t) = C x
x(t) ∈ X −→ y(t) ∈ Y

Assume: linear, time-invariant, asymp stable, min sys realization.

Energy-based modeling: allows for the system to extract, store, and return
value (“energy”) to/from the environment.
(inspired by: “Gibbs free energy”, “available work”, “karma” ...)

Key Modeling Element:

Energy/Value Supply Rate, w :Y× U→ R with w(y(·), u(·)) ∈ L1
loc

w(y(t), u(t)) models the instantaneous exchange of value/energy of the
system with the environment via inputs and outputs.



Supply rates and dissipativity

Examples of supply rates:

w(y(t), u(t)) = u(t)T y(t) (work⇒ “Passive systems”)

w(y(t), u(t)) =
1
2
(‖u(t)‖2 − ‖y(t)‖2)

(
instantaneous gain⇒
“Contractive systems”

)
w(y(t), u(t)) =

1
2
( y(t) u(t) )

[ −N Ω
ΩT M

](
y(t)
u(t)

)
with M ≥ 0 N ≥ 0 (General quadratic supply rate)

For a given energy/value supply rate, w(y(·),u(·)),
a dynamical system is dissipative with respect to w, if whenever the
system starts in an equilibrium state at t0 = 0,∫ t

0
w(y(t),u(t)) dt ≥ 0 for all t ≥ 0

Starting from equilibrium, a dissipative system can never lose more
energy to the environment than it has gained.



Dissipative systems can store energy (but maybe not give it back)

A storage function associated with the supply rate, w, is a
scalar-valued function of state, H : X→ R

+, that satisfies
for any 0 ≤ t0 < t1

H(x(t1))− H(x(t0)) ≤
∫ t1

t0
w(y(t),u(t)) dt (dissipation inequality)

H(x) is a measure of “internal energy” in the system
when it in state x.

The dissipation inequality asserts the change in internal energy cannot
exceed the net energy absorbed or delivered by the system from/to the
environment.

Dissipative systems cannot create “energy” internally apart from what is
delivered from the environment.



Available Storage – max energy extractable from a system state

For any storage function H : X→ R
+ associated with

the supply rate, w: for any 0 ≤ t0 < t1, u ∈ U

H(x(t1))− H(x(t0)) ≤
∫ t1

t0
w(y(t), u(t)) dt (dissipation inequality)

Starting with x(0) = x̂, then for any u ∈ U

−H(x̂) ≤ H(x(τ)) − H(x̂) ≤
∫ τ

0
w(y(t), u(t)) dt =⇒ −

∫ τ

0
w(y(t), u(t)) dt ≤ H(x̂)

=⇒ sup
τ>0,u∈U

(
−

∫ τ

0
w(y(t), u(t)) dt

)
≤ H(x̂)

H(x) ≥ H(0) and wlog we can assume H(0) = 0

“Available Storage”

Hmin(x̂) = sup
u∈U

τ>0

{
−
∫ τ

0
w(y(t), u(t)) dt | x(0) = x̂

}

This is the maximum amount of energy that the system can make available
to do work on the environment, starting at the initial state x̂.
For any x̂ ∈ X, Hmin(x̂) ≤ H(x̂).



Required Supply : min energy required to set a system state

For any storage function H : X→ R
+ associated with

the supply rate, w: for any 0 ≤ t0 < t1, u ∈ U

H(x(t1))− H(x(t0)) ≤
∫ t1

t0
w(y(t), u(t)) dt (dissipation inequality)

If u ∈ U steers the system from a null initial state x(0) = 0
to a final state x(τ) = x̂ at t = τ , then

H(x̂) = H(x̂)− H(0) ≤
∫ τ

0
w(y(t), u(t)) dt

“Required Supply”

Hmax(x̂) = inf
τ≥0
u∈U

{∫ τ

0
w(y(t), u(t)) dt

∣∣∣∣ x(0) = 0
x(τ) = x̂

}

This is the minimum amount of energy that the system must absorb from the environment
to move from a null state to a final state of x̂.
For any x̂ ∈ X, H(x̂) ≤ Hmax(x̂).



Dissipativity is an exogenous system property
externally characterized;
dependent on supply rate
but independent of system realization.

Storage functions are endogenous to a system
internally characterized;
dependent both on supply rate and system realization.

For dissipative systems, both Hmin(x) (available storage)
and Hmax(x) (required supply) are valid storage functions.

Quadratic supply rates imply quadratic storage functions

H(x) =
1
2

xT Qx for some 0 < Q

Hmin(x) =
1
2

xT Qminx Hmax(x) =
1
2

xT Qmaxx
and 0 < Qmin ≤ Q ≤ Qmax



State-space conditions for dissipativity
Take the supply rate to be a general quadratic:

w(y(t), u(t)) =
1
2
( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0 and

suppose H(x) is an associated quadratic storage function:

H(x) =
1
2

xTQx for Q > 0.

The dissipation inequality implies

d
dt

H(x(t)) ≤ w(y(t), u(t)).

=⇒ xTQẋ = xTQ(Ax + Bu) ≤ 1
2
(xTCT uT)

[ −N Ω
ΩT M

](
Cx
u

)
=⇒ 1

2
xT(QA + ATQ + CTNC)x + xT(QB− CTΩ)u− 1

2
uTMu ≤ 0

The system is dissipative wrt the supply w if and only if the LMI[
Q A + AT Q + CTNC Q B− CTΩ

BT Q− ΩTC −M

]
≤ 0

has a positive-definite
solution matrix, Q > 0.



Special case: Passive systems

Take the supply rate to be:

w(y(t), u(t)) = u(t)T y(t) =
1
2
( yT uT )

[
0 I
I 0

](
y
u

)
(defining M = N = 0 and Ω = I)

and suppose H(x) is an associated quadratic storage function:

H(x) =
1
2

xTQx for Q > 0.

The system is passive with the storage function H(x), if and only if Q is
a positive-definite solution to the LMI:[

Q A + AT Q Q B− CT

BT Q− C 0

]
≤ 0⇔

Q A + AT Q ≤ 0

Q B = CT
(Luré LMI)

Passive systems have port-Hamiltonian realizations. Take Q A = J− R
with J = −JT and R = RT (skew-symm + symm).

ẋ = Ax + Bu⇔ Qẋ = QAx + QBu⇔ Q ẋ = (J− R)x + CTu
Q A + AT Q = −2R ≤ 0 ⇔ R ≥ 0



Special case: γ-contractive systems

Pick γ > 0 and take the supply rate to be:

w(y(t), u(t)) =
1
2
(
γ2‖u(t)‖2 − ‖y(t)‖2) = 1

2
( yT uT )

[ −I 0
0 γ2I

](
y
u

)
(defining M = γ2I, N = −I and Ω = 0)

and suppose H(x) is an associated quadratic storage function:

H(x) =
1
2

xTQx for Q > 0.

The system is γ-contractive with the storage function H(x), if and only if
Q is a positive-definite solution to the LMI:

[
Q A + AT Q + CTC Q B

BT Q −γ2I

]
≤ 0⇔ Q A + AT Q + CT C +

1
γ2

Q BBT Q ≤ 0

(Riccati Matrix Inequality)

If G(s) = C(sI− A)−1B is the transfer function for the system then the
system is γ-contractive if and only if ‖G‖H∞ ≤ γ. This is an important
property to insure when designing model-based stabilizing controllers
that are robust to model uncertainty.



The way forward...

Dissipative systems have realizations that encode energy flux
constraints determined by the supply rate and the underlying dissipation
framework via linear matrix inequalities (LMIs).

Seek model reduction strategies that preserve this structure =⇒ Create
reduced order surrogate models that have high fidelity and respect
original dissipation constraints (this is sensible because dissipation is an
exogenous property).

Warning ! Direct use of LMIs can be computationally untenable due to
high model order. (Complexity can grow like O(n4)!)

Addressing this properly remains a topic of interest (and another talk...),
but for the time being assume that a storage function, H(x), is known.

H(x) is dependent on both the system realization and the supply rate.

For linear time invariant systems with a quadratic supply rate, H(x) can
be assumed to be quadratic without loss of generality.



Preserving dissipativity in reduced order models

Take the supply rate to be a general quadratic:

w(y(t), u(t)) =
1
2
( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0

and H(x) is an associated quadratic storage function:

H(x) =
1
2

xTQx for Q > 0.

ẋ = Ax + Bu(t)

y(t) = C x
−→ Qẋr = (J− R)x + QBu(t)

y(t) = C x

(Original Realization) (Dissipative Realization)

Q A = J− R with J = −JT and R = RT (skew-symm + symm).

“Project dynamics” by approximating x(t) ≈ Vrxr(t):

VT
r Q (Vrẋr(t) − AVrxr(t) − Bu(t)) = 0 (Petrov-Galerkin)

or equivalently,

VT
r (QVrẋr(t)− (J − R)Vrxr(t) −QBu(t)) = 0 (Ritz-Galerkin)

for some choice of subspace Vr = Ran(Vr).
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ΩT M
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r Q (Vrẋr(t) − AVrxr(t) − Bu(t)) = 0 (Petrov-Galerkin)

or equivalently,

VT
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for some choice of subspace Vr = Ran(Vr).



Preserving dissipativity in reduced order models

Qẋ = (J− R)x + QBu(t)

y(t) = C x
−→ Qr ẋr = (Jr − Rr)xr + QrBru(t)

yr(t) = Crxr

(Dissipative realization) (Reduced dissipative model)

VT
r (QVrẋr(t) − (J− R)Vrxr(t)−QBu(t)) = 0 (Ritz-Galerkin)

for some choice of subspace Vr = Ran(Vr).

Leads to a reduced model defined by

Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr,

Cr = CVr, Br = Q−1
r VT

r QB

Is this reduced model dissipative with
respect to the same supply rate ?



Preserving dissipativity in reduced order models

The reduced model is defined by

Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr, Cr = CVr, Br = Q−1

r VT
r QB

Evidently, Qr > 0, Jr = −JT
r and Rr = RT

r .
The original storage, Q > 0, solves

[
Q A + AT Q + CT NC Q B− CTΩ

BT Q−ΩT C −M

]
=

[ −2R + CT NC Q B− CTΩ

BT Q− ΩT C −M

]
≤ 0

=⇒
[

Qr Ar + Ar
T Qr + CT

r NCr Qr Br − CT
r Ω

BT
r Qr −ΩT Cr −M

]
=

[ −2Rr + CT
r NCr Qr Br − CT

r Ω

BT
r Qr −ΩT Cr −M

]

=

[
VT

r 0

0 I

][ −2R + CT NC Q B− CTΩ

BT Q−ΩT C −M

][
Vr 0

0 I

]
≤ 0

Thus, Rr ≥ 0 and Ar = Q−1
r (Jr − Rr) is asymp stable.

⇒ The reduced system will be dissipative for any choice of Vr



Finding effective reduced order dissipative models

Qẋ = (J− R)x + QBu(t)

y(t) = C x
−→ Qrẋr = (Jr − Rr)xr + B̂ru(t)

yr(t) = Crxr

(Original dissipative realization) (Reduced dissipative realization)

Fourier Transforms: u(t) �→ û(ω), y(t) �→ ŷ(ω)

Original response: ŷ(ω) = G(ıω)û(ω)
Reduced response: ŷr(ω) = Gr(ıω)û(ω)

with transfer functions:

G(s) = C(sQ − (J− R))−1QB and Gr(s) = Cr(sQr − (Jr − Rr))
−1B̂r.

ŷ(ω)− ŷr(ω) =

(
G(ıω)− Gr(ıω)

)
û(ω)

Find a modeling space Vr so that Gr(ıω) ≈ G(ıω) for ω ∈ R.



Finding effective reduced order dissipative models
G(s) = C(sQ− (J− R))−1QB −→ Gr(s) = Cr(sQr − (Jr − Rr))

−1QrBr

(Original system) (Reduced system)

Find a reduction space Vr so that Gr(ıω) ≈ G(ıω) for ω ∈ R

and Gr(s) is dissipative wrt same supply rate as G.

Heuristic: Gr will be a best (rational) approximation to G when
|G(ıω)− Gr(ıω)| ≈ constant for ω ∈ R (SISO case).

=⇒ Suggests that symmetric distribution of poles and zeros
of |G(s) − Gr(s)| will be optimal. ⇒ Interpolate !

zeros are points of interpolation,
poles include the poles of Gr which are computatable

Iteratively rebalance pole/zero distribution by forming dissipative
interpolants. Similar process for H2/H∞-quasioptimal schemes for
port-Hamiltonian reduction “PH-IRKA”. (more on this later...)

MIMO case is similar but interpolation occurs only in tangent directions
given by (vector) residues of Gr(s).



Interpolation by reduced order dissipative systems

Construct a modeling subspace Vr that forces interpolation.

Interpolatory projections that preserve dissipativity

Given interpolation points σ1, ..., σr and

tangent directions �1, ...,�r, construct

Vr = [(σ1Q− (J − R))−1QB�1, . . . , (σrQ− (J− R))−1QB�r].

Then with Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr, Cr = CVr, QrBr = VT

r QB

the reduced model, Gr :

{
Qrẋr = (Jr − Rr)xr + QrBr u,
yr = Crxr

is stable, minimal, dissipative wrt the given supply rate, w,

and Gr(σi)�i = G(σi)�i for i = 1, ..., r .



How to choose interpolation points ?

Φ(s) = log |G(s)− Gr(s)| is a potential function
· has positive singularities at system eigenvalues.
· has negative singularities at interpolation points.
· is harmonic everywhere else - electrostatic analogy

Locate interpolation points (negative point charges) to balance
equipotentials of log |G(s)− Gr(s)| (makes log |G(s)− Gr(s)| nearly
constant along the imaginary axis)

Interpolate at points that mirror singularities across the imaginary
axis (but there are too many !)

So mirror “equivalent charges” instead; e.g., Ritz values.
(which are the poles of the reduced dissipative model, Gr).



(Near) Best Dissipative Reduced Approximation

G(s) = C(sQ− (J− R))−1QB −→ Hr(s) = Cr(sQr − (Jr − Rr))
−1QrBr

(Original system) (Reduced system)

Force G(−λ̂k) = Gr(−λ̂k) at reduced system poles: λ̂1, λ̂2, . . . , λ̂r.
By choosing an subspace Vr that forces symmetric interpolation,
we expect
Gr(ıω) ≈ G(ıω) for ω ∈ R and also Gr(s) is a dissipative system
with respect to the same supply rate.

MIMO case: if Gr(s) =
r∑

k=1

�k�
T
k

s− λ̂k
then force G(−λ̂k)�k = Gr(−λ̂k)�k.

(also a necc condition for H2-optimality)



Dissipation-preserving Model Reduction
Iterative correction to force interpolation at reflected reduced order
poles: Gr(−λ̂k)�k = G(−λ̂k)�k for k = 1, . . . , r

Algorithm (H∞/H2-based MOR for dissipative systems)

1 Make an initial shift selection {σi}r
1, and tangent directions {�i}r

1.

2 while (not converged)

1 Vr = [(σ1Q− (J − R))−1QB�1, . . . , (σrQ− (J− R))−1QB�r].
2 Set V̂r = VrL−1 with VT

r QVr = LT L (so Qr = V̂r
T
QV̂r = Ir).

3 Set Jr = V̂T
r JV̂r, Rr = V̂T

r RV̂r, and Br = V̂T
r QB.

4 Calculate left eigenvectors: wT
i (Jr − Rr) = λ̂iwT

i .
5 Set σi ←− −λ̂i and �i ←− BT

r wi for i = 1, . . . , r

3 Calculate final reduced dissipative system:
Find Vr = [(σ1Q− (J− R))−1QB�1, . . . , (σrQ − (J− R))−1QB�r].
Set V̂r = VrL−1 with VT

r QVr = LTL, and Ŵr = QV̂r.
Set Jr = V̂T

r JV̂r, Rr = V̂T
r RV̂r, Br = V̂T

r QB, and Qr = Ir.

(Gugercin, Polyuga, B, and van der Schaft, 2010) for passivity-preserving case



Extension to nonlinear systems (passive case)

Linear:
Qż = (J− R)z + CTu(t)

y(t) = C z
with Q > 0, J = −JT , and R = RT ≥ 0.

Nonlinear case:
[∇2E(z)] · ż = (J− R)z + CTu(t)

y(t) = C z

with E(z) uniformly convex, J = −JT , and R = RT ≥ 0.
J, R, and C could all depend on z as well.

Alternative (conjugate) representation:
Define x = ∇E(z) and H(x) = sup

z

(
xTz− E(z)). =⇒ z = ∇H(x).

Then
ẋ = (J− R)∇xH(x) + CTu(t)

y(t) = C∇xH(x)
H(x) defines a storage function.

H(x) is uniformly convex, J = −JT , and R = RT ≥ 0.
J, R, and C now all depend (potentially) on x.

This is a “port-Hamiltonian” representation of the system.



Port-Hamiltonian (PH) Systems
Multi-Input/Multi-Output (MIMO) systems:

u(t) −→ ẋ = (J− R)∇xH(x) + CTu(t)
y(t) = C∇xH(x)

−→ y(t)

H : Rn → [0,∞) is the Hamiltonian, defining the system internal
energy as a function of instantaneous state, x(t).

J = −JT is the structure matrix describing interconnection of
energy storage components. (e.g., Kirchoff’s Laws).

R = RT ≥ 0 is the dissipation matrix describing internal energy
losses.

Generalizes classical Hamiltonian systems: ẋ = J∇xH(x).



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)

y(t) = C∇xH(x)
−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)− H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Why ?



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)

y(t) = C∇xH(x)
−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)− H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Why ?

d
dt

H(x(t)) = ∇xH(x)T ẋ



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)

y(t) = C∇xH(x)
−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)− H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Why ?

d
dt

H(x(t)) = ∇xH(x)T ẋ

= ∇xH(x)T (J− R)∇xH(x) + ∇xH(x)T CTu(t)



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)

y(t) = C∇xH(x)
−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)− H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Why ?

d
dt

H(x(t)) = ∇xH(x)T ẋ

= ∇xH(x)T (J− R)∇xH(x) + ∇xH(x)T CTu(t)

= −∇xH(x)TR∇xH(x) + y(t)T u(t) ≤ y(t)T u(t)
≤ 0 “power”



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)
y(t) = C∇xH(x)

−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)−H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Closed under (power conserving) interconnection.



Port-Hamiltonian (PH) Systems

u(t) −→ ẋ = (J− R)∇xH(x) + CT u(t)
y(t) = C∇xH(x)

−→ y(t)

Advantageous Features:

PH systems are always stable and passive:

H(x1)−H(x0) ≤
∫ t1

t0
y(t)T u(t) dt (∆H ≤total work).

Closed under (power conserving) interconnection.

State space dimension, n, can be very large: n� dim u = dim y.
The input-output map u �→ y is of primary interest.
“Internal state” x(t) is of secondary interest.

Goal: Reduce state space dimension without degrading input-output
response; keep advantageous system features.

Maintain high fidelity and physical consistency (“structure”)



Finding a “smaller” PH system

ẋ = (J − R)∇xH(x) + CTu(t)
y(t) = C∇xH(x)

?−→ ẋr = (Jr − Rr)∇xr Hr(xr) + CT
r u(t)

yr(t) = Cr∇xr Hr(xr)

(Original system) (Reduced system)

Want outputs to remain close, yr(t) ≈ y(t),
over a large class of possible inputs u(t).

Usual approach: Eliminate low value portions of state space.



Finding a “smaller” PH system

ẋ = (J − R)∇xH(x) + CTu(t)
y(t) = C∇xH(x)

?−→ ẋr = (Jr − Rr)∇xr Hr(xr) + CT
r u(t)

yr(t) = Cr∇xr Hr(xr)

(Original system) (Reduced system)

Want outputs to remain close, yr(t) ≈ y(t),
over a large class of possible inputs u(t).

Usual approach: Eliminate low value portions of state space.

Find subspaces Vr,Wr such that
x(t) stays close to Vr =⇒ x(t) ≈ Vrxr(t)

∇xH(x(t)) stays close toWr =⇒ ∇xH(x(t)) ≈Wrhr(t)

. . . and neither Vr norWr depends on the input, u(t).



Finding a “smaller” PH system

ẋ = (J− R)∇xH(x) + Bu(t)

y(t) = BT ∇xH(x)
?−→ ẋr = (Jr − Rr)∇xr Hr(xr) + Bru(t)

yr(t) = BT
r ∇xr Hr(xr)

(Original system) (Reduced system)

Assume that subspaces Vr andWr have been found so that

x(t) ≈ Vrxr(t) and ∇xH(x(t)) ≈Wrhr(t).

How is a reduced PH system determined ?

Note that Wrhr(t) ≈ ∇xH(Vrxr(t)) implies

VT
r Wrhr(t) ≈ VT

r∇xH(Vrxr(t)) = ∇xr Hr(xr(t))

with a “reduced energy”: Hr(xr(t)) = H(Vrxr(t))

So, if biorthogonal bases for Vr andWr are chosen (so VT
r Wr = I)

then hr(t) ≈ ∇xr Hr(xr(t))



Finding a “smaller” PH system

ẋ = (J− R)∇xH(x) + CT u(t)

y(t) = C∇xH(x)
?−→ ẋr = (Jr − Rr)∇xr Hr(xr) + CT

r u(t)

yr(t) = Cr∇xr Hr(xr)

(Original system) (Reduced system)

Substitute x(t) ≈ Vrxr(t) and ∇xH(Vrxr(t)) ≈Wrhr(t) ≈Wr∇xr Hr(xr(t))

Vrẋr(t) = (J− R)Wr∇xr Hr(xr(t)) + CTu(t)
yr(t) = C Wr∇xr Hr(xr(t))

ẋr(t) = (Jr − Rr)∇xr Hr(xr(t)) + CT
r u(t)

yr(t) = Cr∇xr Hr(xr(t))

with Jr = WT
r JWr, Rr = WT

r RWr,

Cr = CWr, and Hr(xr) = H(Vrxr).
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?−→ ẋr = (Jr − Rr)∇xr Hr(xr) + CT
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r u(t)
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with Jr = WT
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r RWr,

Cr = CWr, and Hr(xr) = H(Vrxr).



POD for port-Hamiltonian systems (POD-PH)

Algorithm (POD-based MOR for port-Hamiltonian systems)

1 Generate trajectory x(t), and collect snapshots:
X = [x(t0), x(t1), x(t2), . . . , x(tN)].

2 Truncate SVD of snapshot matrix, X, to get POD basis, Ṽr, for the state
space variables. Then x(t) ≈ Ṽrx̃r(t)

3 Collect associated force snapshots:
F = [∇xH(x(t0)),∇xH(x(t1)), . . . ,∇xH(x(tN))].

4 Truncate SVD of F to get a second POD basis, W̃r, spanning
approximate range of ∇xH(x(t)) ≈ W̃rh̃r(t).

5 Change bases W̃r �→Wr and Ṽr �→ Vr such that WT
r Vr = I.

The POD-PH reduced system is

ẋr = (Jr − Rr)∇xr Hr(xr) + CT
r u(t), yr(t) = Cr∇xr Hr(xr)

with Jr = WT
r JWr, Rr = WT

r RWr, Cr = CWr, and Hr(xr) = H(Vrxr).



Nonlinear Ladder Network Example



Nonlinear Ladder Network

Inductor -
{

Lk = L0 = 1µH
Rk = R0 = 1Ω

Capacitor -

 Ck(V) =
C0V0

V + V0
:

C0 = 70pF
V0 = 1.8V

Gk = G0 = 30µ�



Nonlinear Ladder Network
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Augment the reduction subspaces

POD-PH provides an empirically driven choice for Vr andWr

. . . tied to an input ensemble
⇒ Only as good as the input ensembles chosen.

Other subspaces may be considered to replace/supplement POD:

Find a choice of subspaces that is asymptotically optimal
for small u (hence for small x).

∇xH(x) ≈ Q−1x for a symmetric positive definite Q ∈ R
n×n. (e.g., Q = ∇2E(0))

Leads to consideration of Linear Port-Hamiltonian Systems

ẋ = (J − R)Q−1x + CTu(t)
y(t) = C Q−1x

−→ ẋr = (Jr − Rr)Q−1
r xr + CT

r u(t)
yr(t) = CrQ−1

r xr

(Original system) (Reduced system)

Find (sub)optimal subspaces for the linearized system; use them to
augment the POD subspaces to reduce the original nonlinear system.



Ladder Network with POD/ensemble-free subspaces
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Ladder Network with POD/ensemble-free subspaces
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Combining POD and ensemble-free bases.
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POD is very accurate in capturing observed dynamics (with respect to a particular choice
of input ensemble) — but not unobserved yet feasible dynamics.
Enrich this POD basis by including components that are optimized for arbitrary (small)
virtual inputs (e.g., the ensemble-free H∞/H2-adapted bases).
While the POD component brings in accurate approximations for inputs similar to the
training ensemble, the linear optimal component may be expected to correctly adapt
system behavior for as yet unobserved inputs.
For any choice of reduction bases, the reduced system approximations remain structurally
similar to the original system and in particular, will always be stable and passive.



Conclusions

Reviewed basic notions of dissipative systems for LTI systems.
Key point: dissipativity is an exogenous property tied to a specific supply rate,
not tied to a particular realization.
A particular realization gives rise to a family of storage functions (parameterized by
solutions to an LMI).

Introduced an interpolatory projection method that preserves dissipative
system structure.
+ Pro: Allows arbitrary state-space projection - gives potential for high-fidelity
− Con: Requires knowledge of a storage function

(potentially intractable for large order)

Nonlinear extensions for passive dynamical systems
Port-Hamiltonian systems

� Ensemble-based POD methods that preserve passivity.
� Ensemble-free, asymptotically optimal methods that preserve passivity.
� Combination of ensemble-based and ensemble-free bases.

Key point: turn an implicitly defined exogenous feature of the system
(dissipativity) into an explicit structural feature for a realization that can
be preserved with high fidelity model reduction strategies.


